
1

Vision Plan

For MVC Reporting Website Framework

(MVC RWF)

Version 3.0

Submitted in partial fulfillment of the Masters of Software

Engineering Degree.

Thaddeus Thomas Tuck

CIS 895 – MSE Project

Department of Computing and Information Sciences

Kansas State University

Committee Members

Dr. Daniel Andresen

Dr. Mitchell Neilsen

Dr. William Hsu

2

Change Log
Version # Changed By Release Date Change Description

1.0 Thaddeus Tuck 3/25/2018 Initial Release

1.1 Thaddeus Tuck 4/19/2018 Correction of Requirement

2.0 Thaddeus Tuck 5/2/2018 Updated from
Presentation 1

2.1 Thaddeus Tuck 6/5/2018 Updated for Spelling

Mistakes

2.2 Thaddeus Tuck 6/10/2018 Moved filtering
requirements entirely under

final release

3.0 Thaddeus Tuck 10/21/2018 Updated from
Presentation 2

3

List of Figures
Figure 1: Project Overview ... 7

Figure 2: Report Website Framework Data Flow Diagram12

Figure 3: Developer Installation Use Case...14

Figure 4: Developer Standard Use Case ..15

4

Table of Contents
Change Log .. 2

List of Figures .. 3

1. Introduction ... 6

1.1 Motivation .. 6

1.2 ASP.NET MVC .. 6

1.3 Reporting Website Framework ... 7

1.4 Terms & Definitions ... 8

1.5 References ...10

2. Project Overview ..11

2.1 Introduction ...11

2.1.1 Controller ... 11

2.1.2 Service ... 11

2.1.3 Repository .. 11

2.2 Project Goal ...13

2.3 Project Purpose ..13

3. Project Requirements ..13

3.1 Model Requirements..15

3.1.1 MRI 1 [Critical Requirement] ... 15

3.1.2 MRI 2 [Critical Requirement] ... 16

3.1.3 MRI 3 [Critical Requirement] ... 16

3.1.4 MRI 4 [Critical Requirement] ... 16

3.1.5 MRI 5 ... 16

3.1.6 MRI 6 [Critical Requirement] ... 16

3.2 Structural Requirements ..17

3.2.1 SRI 1 [Critical Requirement] .. 17

3.2.2 SRI 2 [Critical Requirement] .. 17

3.2.3 SRI 3 [Critical Requirement] .. 17

3.3 View Requirements ...18

5

3.3.1 VRI 1 [Critical Requirement] .. 18

3.3.2 VRI 2 [Critical Requirement] .. 18

3.3.3 VRI 3 [Critical Requirement] .. 18

3.3.4 VRI 4 [Critical Requirement] .. 18

3.4 Extensibility Requirements ..19

3.4.1 ERI 1 .. 19

3.4.2 ERI 2 .. 19

3.4.3 ERI 3 .. 19

3.5 Performance Requirements ..20

3.5.1 PRI 1 [Critical Requirement] .. 20

4. Assumptions ...20

5. Constraints ..21

6. Environment ...21

6

1. Introduction

1.1 Motivation

The motivation of the project is to develop a framework that can be used by

any C# developer to quickly deploy a reporting website while providing

optimal customizability for an enterprise level website.

One of the biggest challenges when trying to develop a web product is the

various skills of the developers involved and the threat of copying and pasting

complex HTML and JavaScript between similar pages. Creating a framework

that allows developers to use C# to instantiate models that can then be

processed into a web page (View) without having to redefine the actual html

each time creates an environment of reusability and extensibility.

By using standardized views and models it is relatively easy to introduce

complex standardized functionality such as filtering, column selection, and

column order for table based reports. To facilitate this, standardized patterns

need to be created and followed.

ASP.NET MVC which stands for model, view controller is an application

programming interface (API) that provides the functions and underlying

utilities for build dynamic websites using C#.

1.2 ASP.NET MVC

“ASP.NET MVC gives you a powerful, patterns-based way to build dynamic

websites that enables a clean separation of concerns and that gives you full

control over markup for enjoyable, agile development. ASP.NET MVC

includes many features that enable fast, TDD-friendly development for

creating sophisticated applications that use the latest web standards.” [1]

7

1.3 Reporting Website Framework

The basis for the Reporting Website Framework is to extend base classes that

contain standard functions and operations to prevent the reimplementation of

standardized code. The goal of this project is to implement the full architecture

of MVC with a service layer for additional extensibility. In addition, by

creating overridable default layouts and views the framework can provide

entry-level web developers with a fully functioning website while still

allowing for extensibility as their skills progress as well as configurability

without having to have extensive experience with JavaScript, jQuery, or CSS.

Figure 1: Project Overview

8

1.4 Terms & Definitions

MVC – “The Model-View-Controller (MVC) architectural pattern separates

an application into three main components: the model, the view, and the

controller.” [2]

Models – “Model objects are the parts of the application that implement the

logic for the application's data domain. Often, model objects retrieve and store

model state in a database. For example, a Product object might retrieve

information from a database, operate on it, and then write updated information

back to a Products table in a SQL Server database.” [2]

View – “Views are the components that display the application's user interface

(UI). Typically, this UI is created from the model data. An example would be

an edit view of a Products table that displays text boxes, drop-down lists, and

check boxes based on the current state of a Product object.” [2]

Controller – “Controllers are the components that handle user interaction,

work with the model, and ultimately select a view to render that displays UI.

In an MVC application, the view only displays information; the controller

handles and responds to user input and interaction. For example, the controller

handles query-string values, and passes these values to the model, which in

turn might use these values to query the database.” [2]

Action – Actions are public methods within a Controller that serve as

invokable methods accessed from the web application by

/{Controller}/{Action}.

Service Layer – “A service layer is an additional layer in an ASP.NET MVC

application that mediates communication between a controller and repository

layer. The service layer contains business logic. In particular, it contains

validation logic.” [3]

Repository – “A repository acts like a middleman between the rest of the

application and the data access logic. A repository isolates all the data access

code from rest of the application.” [4]

Layout – “This layout defines a top level template for views in the app. Apps

don't require a layout, and apps can define more than one layout, with different

views specifying different layouts.” [5]

Razor Syntax – “Razor is a simple programming syntax for embedding server

code in web pages. The Razor syntax gives you all the power of ASP.NET,

9

but is using a simplified syntax that's easier to learn if you're a beginner, and

makes you more productive if you're an expert.” [6]

ViewData – “ViewData is a dictionary object that you put data into, which

then becomes available to the view. ViewData is a derivative of the

ViewDataDictionary class, so you can access by the familiar “key/value”

syntax.” [7]

 ViewBag – “The ViewBag object is a wrapper around the ViewData object that

 allows you to create dynamic properties for the ViewBag.” [7]

DataTables – “DataTables is a plug-in for the jQuery Javascript library. It is

a highly flexible tool, build upon the foundations of progressive enhancement,

that adds all of these advanced features to any HTML table.” [8]

Extension – “Extension methods enable you to add methods to existing types

without creating a new derived type, recompiling, or otherwise modifying the

original type. An extension method is a special kind of static method, but they

are called as if they were instance methods on the extended type.” [9]

10

1.5 References

 [1]"MVC", The Official Microsoft ASP.NET Site, 2018. [Online]. Available:

https://www.asp.net/mvc. [Accessed: 13- Mar- 2018].

[2]"ASP.NET MVC Overview", Msdn.microsoft.com, 2018. [Online]. Available:

https://msdn.microsoft.com/en-us/library/dd381412(v=vs.108).aspx. [Accessed:

13- Mar- 2018].

[3]"Validating with a Service Layer (C#)", Docs.microsoft.com, 2018. [Online].

Available: https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions-

1/models-data/validating-with-a-service-layer-cs. [Accessed: 13- Mar- 2018].

[4]B. Joshi, "Using the Repository Pattern in C# with ASP.NET MVC and Entity

Framework", Codeguru.com, 2018. [Online]. Available:

https://www.codeguru.com/csharp/.net/net_asp/mvc/using-the-repository-pattern-

with-asp.net-mvc-and-entity-framework.htm. [Accessed: 13- Mar- 2018].

[5]S. Smith, "Layout in ASP.NET Core", Docs.microsoft.com, 2018. [Online].

Available: https://docs.microsoft.com/en-us/aspnet/core/mvc/views/layout.

[Accessed: 13- Mar- 2018].

[6]"ASP.NET Razor C# Syntax", W3schools.com, 2018. [Online]. Available:

https://www.w3schools.com/asp/razor_syntax.asp. [Accessed: 13- Mar- 2018].

[7]R. Appel, "When to use ViewBag, ViewData, or TempData in ASP.NET MVC 3

applications – Rachel Appel", Rachelappel.com, 2018. [Online]. Available:

http://www.rachelappel.com/when-to-use-viewbag-viewdata-or-tempdata-in-asp-

net-mvc-3-applications/. [Accessed: 13- Mar- 2018].

[8]"DataTables | Table plug-in for jQuery", Datatables.net, 2018. [Online]. Available:

https://datatables.net/. [Accessed: 13- Mar- 2018].

[9]P. Mehra, "Extension Methods in C#", C-sharpcorner.com, 2009. [Online].

Available: https://www.c-sharpcorner.com/UploadFile/puranindia/extension-

methods-in-C-Sharp-3-0/. [Accessed: 13- Mar- 2018].

11

2. Project Overview
 This section provides information about the structures and goals of the

 Reporting Framework project.

2.1 Introduction

The block diagram in Figure 2 gives an overview of the internal working of

the framework with an example of a standard work flow for the website when

the framework is used to create a table-based report.

2.1.1 Controller
 The action calls the service to be used to create the table model. Then

 sets any necessary view settings for the action. Finally, the action

 passes the view model to the function to return the cshtml view or

 JSON Response.

2.1.2 Service
 The service should contain at least two functions if complete

 extensibility is desired; one function that serves as the public accessor

 for the controller and one function that serves as the functional

 method that can be overridden by a consuming application. The public

 accessor will call a function of the base service class that will bind the

 user provided parameters into a request model that will then be passed

 into the functional method. The functional method will contain the

 business logic and calls to the repository to create the desired model to

 be used for/by the view.

2.1.3 Repository
 The repository contains the logic that loads data from the data source

 typically Entity Framework or direct SQL queries. For this project the

 data source is not relevant as the repository should be the connection

 between the model that represents the view and the data. For the

 example of table views the repository is responsible for the creation of

 the columns and rows for the table model.

12

Figure 2: Report Website Framework Data Flow Diagram

13

2.2 Project Goal

The primary focus of the MVC Reporting Website Framework is to provide

an ease of use and development in setting up an Enterprise level MVC web

application without the need for extensive copy/paste. This project will

ultimately be packaged as a NuGet package that when installed into an MVC

ASP.NET project in Visual Studio can be utilized to quickly setup DataTable

based reporting and other website features without the need to reimplement

any HTML, JavaScript, or CSS. A C# developer should be able to use the

framework to easy setup a new report using the pattern and instructions

provided with the project.

2.3 Project Purpose

This framework is developed to fulfill the need for a development team of

varying web-development experience to be able to implement, deploy, and

maintain an Enterprise level web project while respecting best-practices and

standardized implementations for features. The business side of most projects

will tell development that they want a new feature that works like “a”, or that

they want to make a change that will take effect on an entire feature set; e.g.,

a change to the way a filter works, or a new filter. By using this framework,

the development team will be able to facilitate these requests quickly and

easily without the need to duplicate code in multiple locations.

3. Project Requirements
 This section provides information about the requirements for the MVC

 Reporting Framework. Each requirement is given a unique number and

 discussed in detail. Critical requirements will be indicated in the description

 and the targeted release that will fulfill the requirement.

 Figure 3 is the use case diagram that visualizes a developer installing the

 framework. The developer will create an empty ASP.NET MVC C# project

 in Visual Studio then remove the default files as will be detailed in the

 installation instructions. The developer will then install the NuGet package

 for the reporting framework and setup any configuration changes they would

 like to make. The final step is to run the website and verify their

 configuration changes.

14

Figure 3: Developer Installation Use Case

 Figure 4 is the use case diagram that visualizes a developer using the

 framework to create a feature or page of the product. The developer will

 create the models to contain data necessary for the views extending the

 framework models for the selected rendering framework e.g., DataTable,

 Grid, Calendar, or a Custom View. Once the models are created the

 developer will create a repository that extends the base framework

 repository to fill the models with the necessary data. A service is then

 extended from the framework base service to access and utilize the

 developer’s repository. The last required task for the developer is to create a

 controller that extends the framework base controller with actions that return

 the desired view using the filled model from the service. An optional step for

 the developer is to define custom partial views for CSS and/or JavaScript.

15

Figure 4: Developer Standard Use Case

The requirements in the below sections should be fulfilled by the final NuGet

package and instructions. These requirements are divided into different

modules by their separation of concerns. They are – Model Requirements,

Structural Requirements, View Requirements, Extensibility Requirements,

Performance Requirements.

3.1 Model Requirements

The requirements in this section outline the existence, necessary properties

and features for framework models that will allow standardized layouts and

views for framework features. The requirements are numbered as MRI X,

where MRI stands for Model Requirement Item.

3.1.1 MRI 1 [Critical Requirement]
 The framework shall have a model that will represent the cell of a table.

 This is a critical requirement so that the framework can render the

 HTML element that represents a cell in a table.

• Build Release Applicability: Demo 2, Final Release

16

3.1.2 MRI 2 [Critical Requirement]
 The framework shall have a model that will represent the row of table.

 This is a critical requirement so that the framework can render the

 HTML element that represents a row in a table.

• Build Release Applicability: Demo 2, Final Release

3.1.3 MRI 3 [Critical Requirement]
 The framework shall have a model that will represent the column of

 table. This is a critical requirement so that the framework can render

 the HTML element that represents a column in a table.

• Build Release Applicability: Demo 2, Final Release

3.1.4 MRI 4 [Critical Requirement]
 The framework shall have a model that will represent the table. This

 is a critical requirement so that the framework can render the HTML

 element that represents the table.

• Build Release Applicability: Demo 2, Final Release

3.1.5 MRI 5
 The framework shall have an underlying model that can be used by

 the framework and the end developer to indicate if an error has

 occurred.

• Build Release Applicability: Demo 2, Final Release

3.1.6 MRI 6 [Critical Requirement]
 The models that represents the columns and cells of a table should

 have properties and functions to enable filtering by the reporting

 portion of the framework. This is a critical requirement so that the

 framework can provide a standard desired feature of reporting

 applications.

• Build Release Applicability: Final Release

17

3.2 Structural Requirements

The requirements in this section outline the existence, necessary properties

and features for the structural components of the framework that provide the

base standardized classes. The requirements are numbered as SRI X, where

SRI stands for Structural Requirement Item.

3.2.1 SRI 1 [Critical Requirement]
 The framework shall have a base repository that will provide standard

 functions to assist with model binding as well as standard processing

 for standardized views. This is a critical requirement as the repository

 is a critical layer/component of the MVC architecture.

• Build Release Applicability: Demo 1, Demo 2, Final Release

3.2.2 SRI 2 [Critical Requirement]
 The framework shall have a base service that will provide standard

 functions to assist with processing for requests as well as establishing

 the connection to the repository for the service. This is a critical

 requirement as the service layer provides for validation and integration

 between the controller and repository layers of the MVC architecture.

• Build Release Applicability: Demo 1, Demo 2, Final Release

3.2.3 SRI 3 [Critical Requirement]
 The framework shall have a base controller that will provide standard

 functions to assist with processing view models into framework

 supported views. As well as, establishing the connection to the service

 for the controller. This is a critical requirement as the controller is most

 critical component of the MVC architecture as it provides the HTML

 for the consuming web application.

• Build Release Applicability: Demo 1, Demo 2, Final Release

18

3.3 View Requirements

The requirements in this section outline the existence, necessary properties

and features for the view components of the framework that provide the base

standardized layouts and partials. The requirements are numbered as VRI X,

where VRI stands for View Requirement Item.

3.3.1 VRI 1 [Critical Requirement]
 The framework shall have a base layout that has sections for CSS,

 JavaScript, parameters, copyright information. This is a critical

 requirement as the base layout is used by every view for the appearance

 of the overall website.

• Build Release Applicability: Demo 2, Final Release

3.3.2 VRI 2 [Critical Requirement]
 The framework shall have a layout for a DataTable report. This is a

 critical requirement as the layout for the DataTable report provides the

 locations for the components of the final DataTable report view.

• Build Release Applicability: Demo 2, Final Release

3.3.3 VRI 3 [Critical Requirement]
 The framework shall have a view for a DataTable report that is

 definable by the models that represents the table and its components.

 This is a critical requirement as a view is required to render the model

 as HTML to the browser or web application.

• Build Release Applicability: Demo 2, Final Release

3.3.4 VRI 4 [Critical Requirement]
 The framework shall have partials for the HTML, CSS, and JavaScript

 needed for filtering, column selection, and column ordering for the

 DataTable. This requirement is critical these functions are standard

 features of reporting.

• Build Release Applicability: Final Release

19

3.4 Extensibility Requirements

The requirements in this section outline the existence of, necessary properties,

features, classes, and extensions for the framework that will allow the end

developer to customize and override the components of the framework. The

requirements are numbered as ERI X, where ERI stands for Extension

Requirement Item.

3.4.1 ERI 1
 The framework shall have a service provider that can be used to allow

 the end developer to create additional web projects that can utilize,

 extend, override components of the MVC Reporting Framework.

• Build Release Applicability: Final Release

3.4.2 ERI 2
 The framework shall have extension classes that can be used to

 customize standard options for whether features are enabled or disabled

 by default.

• Build Release Applicability: Final Release

3.4.3 ERI 3
 The end developer shall have the ability to use multiple ASP.NET

 MVC projects that reference the MVC Reporting Framework NuGet

 package to create a fully extensible website.

• Build Release Applicability: Final Release

20

3.5 Performance Requirements

The requirements in this section outline the necessary performance and

latency expectations for the site features and reporting. The requirements are

numbered as PRI X, where PRI stands for Performance Requirement Item.

3.5.1 PRI 1 [Critical Requirement]
 The framework should be able to use post loading to render and be able

 to search and filter at least 80,000 rows with 20 columns in less than 30

 seconds from the beginning of DataTable initialization. This is a critical

 requirement to demonstrate that the reporting portion of the framework

 is viable for enterprise level reporting applications.

• Build Release Applicability: Final Release

4. Assumptions

• The developer will use the latest version of ASP.NET MVC.

• The developer(s) will use Visual Studio (preferably 2017) when

developing using the framework.

• The developer will use Razer for the view component language.

• The framework will not be concerned with how data is loaded into

the repository.

• If the developer overrides a portion of the framework they are

responsible for ensuring that necessary functions remain

consistent.

• The framework will not deal with security as that is major concern

of implementation specific for each end product/project and has

constraints outside the scope of this framework.

21

5. Constraints

• The framework’s abilities in relation to its standard reporting

features are constrained by the jQuery DataTables API.

• The project and resource extensibility of the framework is

provided by the Embedded Resource Virtual Path Provider NuGet

package delivered through NuGet built into Visual Studio.

6. Environment

• Visual Studio 2017 will be used to develop the MVC Reporting

Framework.

• .NET Framework 4.6.1 will be used and any project that uses the

MVC Reporting Framework should utilize .NET Framework 4.6.1.

• Version control will be handled through Visual Studio Team

Services.

• This project and all utilizing projects will be written using C#.

